
Process – Termination
By Anand George

Terminating a Process (MSDN)

• Terminating a process has the following results:
• Any remaining threads in the process are marked for

termination.

• Any resources allocated by the process are freed.

• All kernel objects are closed.

• The process code is removed from memory.

• The process exit code is set.

• The process object is signaled.

How Processes are Terminated (
MSDN)

• A process executes until one of the following events
occurs:
• Any thread of the process calls the ExitProcess function. Note

that some implementation of the C run-time library (CRT) call
ExitProcess if the primary thread of the process returns.

• The last thread of the process terminates.

• Any thread calls the TerminateProcess function with a handle to
the process.

• For console processes, the default console control handler calls
ExitProcess when the console receives a CTRL+C or CTRL+BREAK
signal.

• The user shuts down the system or logs off.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682658(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686714(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682066(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682658(v=vs.85).aspx

Where do main functions return value
go?

• GetProcessExitCode.

• This function returns immediately. If the process has not
terminated and the function succeeds, the status
returned is STILL_ACTIVE. If the process has terminated and
the function succeeds, the status returned is one of the
following values:

• The exit value specified in the ExitProcess or
TerminateProcess function.

• The return value from the main or WinMain function of the
process.

• The exception value for an unhandled exception that
caused the process to terminate.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682658(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686714(v=vs.85).aspx
http://go.microsoft.com/fwlink/p/?linkid=125835
http://go.microsoft.com/fwlink/p/?linkid=125836

What goes? what stays? when a
process dies?

• I did an malloc
• I did an fopen/ fwrite
• I created window
• I created a registry key?
• I edited a DB.
• I posed a message in Facebook.
• I copied something from a notepad and killed the notepad before

paste.

• Thumb Rule?
• Anything in process address space (user mode)memory gets

cleaned up.
• Handles are closed and objects are cleaned up if required by

kernel.
• Anything in devices, inter-process communications, data copied to

other process address space stays like disk, packets send via NIC,
clipboard etc.

• Now you know why the window of a process disappear when
you kill that process from the task manager.

What if some resource in memory remains
even after the process Termination?

Every time you've heard someone say they saw a ghost, or
an angel. Every story you've ever heard about vampires,
werewolves, or aliens, is the system assimilating some
program that's doing something they're not supposed to
be doing. The Oracle

A case study

• A socket handle

• Process is terminated.

• Handle remain open.

• Netstat, tcpview all show unknown process.

• Subsequent calls to listen to same port fail as existing
handle is not closed.

• Programmer was not explicitly calling close handle as it
was listening socket.

Investigation

• Owner process has unlinked from the process list in kernel.

• Check for any suspicious IRP on /Device/AFD file object.

• Did a complete memory search especially in kernel for
any hidden binary. (I felt like a malware behavior)

• Check of any suspicious threads.

• All looks good.

Now what ?

• Found this,
• https://support.microsoft.com/en-us/kb/2577795

• Kernel sockets leak on a multiprocessor computer that is running
Windows Server 2008 R2 or Windows 7

• Installed the hotfix to get out of the mystery.

https://support.microsoft.com/en-us/kb/2577795

Resisting termination

• Pending IRP.

• Suspend process

• Attached debugger.

• Lot of ways if you have driver in kernel.

Bottom line

• We really need to worry if a process is leaking resources (
handles) or memory once it is terminated unless these are
some kinda shared resource which are owned by other
processes.

Demo

• Termination and Exit code.

Summary

• Process Termination

• Resource clean up.

Thank you

