Please Read Before Using

(C) Copyright 1998 Microsoft Corporation. All Rights Reserved.

The Visual Basic Loan Sample Application is provided “AS-IS,” without warranty of any kind, and any use of the Sample and any documentation provided regarding it is at your own risk. To the maximum extent permitted by applicable law, Microsoft and its suppliers disclaim all warranties and conditions, either express or implied, including, but not limited to, implied warranties and conditions of merchantability, fitness for a particular purpose, title, and non-infringement, with regard to the sample.
Loan Sample Application

The Loan sample application (Loan.vbp) demonstrates how you can use ADO and createable recordsets to dynamically populate a DataGrid control. Additionally, the Data Report designer is used to generate reports that can be printed, or exported to HTML.

Requirements

To run this application, you must use Visual Basic 6.0 or later on a computer with Microsoft ActiveX Data Objects 2.0 Library, or later, registered.
To Use the Application

If you are planning to borrow money, use the Loan sample application to calculate your payments per month.

1. In the Purchase Amount box, type the amount to be borrowed.

2. Do not type directly into the Down Payment box. Instead, type a percentage into the percentage box (to the right of the Down Payment box)—for example, type .1 and the amount will change to 10% when the control loses focus. The actual amount will be calculated when the control loses focus.

3. In the Interest Rates boxes, specify the minimum and maximum percentage rates that are available. Rates are incremented by .25.

4. In the Years in Loan boxes select the minimum and maximum number of years you wish to calculate for.

If you wish to calculate the loan in months instead of years, on the Terms menu, click Months. Or double-click the Years caption.

5. Click Calculate Payments. The grid will fill with all possible payments, calculated on a monthly basis.

6. If you are interested in a particular payment's amortization schedule, click its grid cell to select it, then click Show Amortization. The Show Amortization button is not enabled until a specific cell is selected. Alternatively, just double-click on the cell to show its amortization schedule.

7. If you want to print the schedule, click Data Report to create a data report that can be printed or exported to HTML format. The Data Report button is not enabled until an amortization schedule is displayed.

ADO Createable Recordsets

Until now, the only way to create tables of data, either for look-up purposes or storage, has been to use a multi-dimensional array and insert the array members into a document. In some instances, this would be too cumbersome to work with easily.

The ADO Recordset object presents a new way of temporarily creating and storing large tables by allowing you to create tables at run time. With that table built, you can use all of the Recordset methods to find, sort, and manipulate the data. If you want to display the data, you can use any control or component that features the DataSource property (such as the DataGrid and the Data Report designer), and simply assign the Recordset object to the property.

Creating Recordsets

The steps to creating a Recordset object are few and easy:

8. Set a reference to the Microsoft ActiveX Data Objects 2.0 Library.

9. Declare module-level variables for each Recordset object needed.

10. Instantiate the Recordset objects.

11. Use the Append method of the Fields collection to add a field to the recordset.

12. Invoke the Open method on the recordset.

13. Use the AddNew method of the Recordset object to add as many records as needed.

The code below is taken from the sample, and shows all of the steps above:

Set rsPayments = New ADODB.Recordset

With rsPayments

.Fields.Append "rate 1", adBSTR

.Fields.Append "rate 2", adBSTR

.Fields.Append "rate 3", adBSTR

.Open

rsPayments.AddNew

rsPayments![rate 1] = 0

rsPayments![rate 2] = 0

rsPayments![rate 3] = 0

End With

After creating and populating a recordset, you can set the DataSource property of the DataGrid control to the recordset to display it:

Set DataGrid1.DataSource = rsPayments

Data Report Designer

The sample also demonstrates how you can use the Data Report designer to bind TextBox controls to fields in the recordset at run time. After setting the DataSource property of the DataReport object to a recordset object, set the DataField property of individual controls to the appropriate data fields.

' rptAmort is the name of the DataReport object.

Set rptAmort.DataSource = rsAmort

With rptAmort.Sections("Details")

.Controls("txtPrincipalPaid").DataField = "Principal Paid"

.Controls("txtInterest").DataField = "Interest"

.Controls("txtBalanceDue").DataField = "Balance Due"

.Controls("txtTotalInterest").DataField = "Total Interest"

End With

